Integrable Lattices : Random Matrices and Random Permutations ∗ Pierre

نویسنده

  • Pierre van Moerbeke
چکیده

These lectures present a survey of recent developments in the area of random matrices (finite and infinite) and random permutations. These probabilistic problems suggest matrix integrals (or Fredholm determinants), which arise very naturally as integrals over the tangent space to symmetric spaces, as integrals over groups and finally as integrals over symmetric spaces. An important part of these lectures is devoted to showing that these matrix integrals, upon apropriately adding time-parameters, are natural tau-functions for integrable lattices, like the Toda, Pfaff and Toeplitz lattices, but also for integrable PDE’s, like the KdV equation. These matrix integrals or Fredholm determinants also satisfy Virasoro constraints, which combined with the integrable equations lead to (partial) differential equations for the original probabilities. Expanded version of lectures at MSRI, Berkeley, Spring 1998. To appear in ”Random Matrices and Their Applications” : Mathematical Sciences Research Institute Publications #40, Cambridge University Press, 2001. Department of Mathematics, Université de Louvain, 1348 Louvain-la-Neuve, Belgium and Brandeis University, Waltham, Mass 02454, USA. E-mail: [email protected] and @math.brandeis.edu. The support of a National Science Foundation grant # DMS-98-4-50790, a Nato, a FNRS and a Francqui Foundation grant is gratefully acknowledged. 1 §0, p.2

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrals over classical Groups, Random permutations, Toda and Toeplitz lattices

2 Two-Toda lattice and reductions (Hänkel and Toeplitz) 17 2.1 Two-Toda on Moment Matrices and Identities for τ -Functions 18 2.2 Reduction to Hänkel matrices: the standard Toda lattice and a Virasoro algebra of constraints . . . . . . . . . . . . . . . . . 26 2.3 Reduction to Toeplitz matrices: two-Toda Lattice and an SL(2,Z)algebra of constraints . . . . . . . . . . . . . . . . . . . . . . 29...

متن کامل

Increasing Subsequences in Nonuniform Random Permutations

Connections between longest increasing subsequences in random permutations and eigenvalues of random matrices with complex entries have been intensely studied. This note applies properties of random elements of the finite general linear group to obtain results about the longest increasing and decreasing subsequences in non-uniform random permutations.

متن کامل

Gl(n,q) and Increasing Subsequences in Nonuniform Random Permutations

Connections between longest increasing subsequences in random permutations and eigenvalues of random matrices with complex entries have been intensely studied. This note applies properties of random elements of the finite general linear group to obtain results about the longest increasing subsequence in non-uniform random permutations.

متن کامل

Rotationally invariant ensembles of integrable matrices.

We construct ensembles of random integrable matrices with any prescribed number of nontrivial integrals and formulate integrable matrix theory (IMT)-a counterpart of random matrix theory (RMT) for quantum integrable models. A type-M family of integrable matrices consists of exactly N-M independent commuting N×N matrices linear in a real parameter. We first develop a rotationally invariant param...

متن کامل

The Shape of Random Pattern-avoiding Permutations

We initiate the study of limit shapes for random permutations avoiding a given pattern. Specifically, for patterns of length 3, we obtain delicate results on the asymptotics of distributions of positions of numbers in the permutations. We view the permutations as 0-1 matrices to describe the resulting asymptotics geometrically. We then apply our results to obtain a number of results on distribu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000